## Entanglement cost of three-level antisymmetric states

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys. A: Math. Gen. 36 L237
(http://iopscience.iop.org/0305-4470/36/15/104)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 02/06/2010 at 11:35

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# Entanglement cost of three-level antisymmetric states 

Fumitaka Yura<br>Imai Quantum Computing and Information Project, ERATO, JST, Daini Hongo White Bldg 201, 5-28-3 Hongo, Bunkyo, Tokyo 113-0033, Japan

Received 24 February 2003, in final form 4 March 2003
Published 3 April 2003
Online at stacks.iop.org/JPhysA/36/L237


#### Abstract

We show that the entanglement cost of the three-dimensional antisymmetric states is one ebit.


PACS numbers: $03.65 . U d, 03.67 .-\mathrm{a}$

The concept of entanglement is the key to quantum information processing. To quantify the resource of entanglement, its measures should be additive, such as bits for classical information. One candidate for such additive measures is entanglement of formation. In [1], it is shown that the entanglement cost $E_{c}$ of creating some state can be asymptotically calculated from the entanglement of formation. In this sense, the entanglement cost has an important physical meaning. Since the known results are, nevertheless, not so much [6, 7], we pay attention to antisymmetric states that are easy to deal with.

As is already shown [2], the entanglement of formation for two states in $\mathcal{S}\left(\mathcal{H}_{-}\right)$is additive. Furthermore, the lower bound for the entanglement cost of density matrices in $d$-level antisymmetric space, obtained in [3], is $\log _{2} \frac{d}{d-1}$ ebit. In this paper, we show that the entanglement cost of three-level antisymmetric states $(d=3)$ in $\mathcal{S}\left(\mathcal{H}_{-}\right)$is exactly one ebit.

We first define the three-level antisymmetric states. Let us consider a bipartite qutrit system, $\mathcal{H}_{A}=\mathcal{H}_{B}=\mathbb{C}^{3}$. The antisymmetric subspace $\mathcal{H}_{-}$on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is defined as follows:

$$
\mathcal{H}_{-}:=\operatorname{span}_{\mathbb{C}}\{|01\rangle-|10\rangle,|12\rangle-|21\rangle,|20\rangle-|02\rangle\} \subset \mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

Then, the antisymmetric state on $\mathcal{H}_{-}^{\otimes n}$ shared with Alice and Bob is, in general,
$|\psi\rangle=\sum_{\substack{j_{1}, j_{2}, \ldots, j_{n}=0 \\ k_{1}, k_{2}, \ldots, k_{n}=0}}^{2} \alpha_{j_{1}, j_{2}, \ldots, j_{n} ; k_{1}, k_{2}, \ldots, k_{n}}\left|j_{1}, j_{2}, \ldots, j_{n} ; k_{1}, k_{2}, \ldots, k_{n}\right\rangle$

$$
\begin{equation*}
\in \mathcal{H}_{-}^{\otimes n} \subset \mathcal{H}_{A}^{(1)} \otimes \mathcal{H}_{A}^{(2)} \otimes \cdots \otimes \mathcal{H}_{A}^{(n)} \otimes \mathcal{H}_{B}^{(1)} \otimes \mathcal{H}_{B}^{(2)} \otimes \cdots \otimes \mathcal{H}_{B}^{(n)} \tag{1}
\end{equation*}
$$

$\alpha_{j_{1}, j_{2}, \ldots, j_{n} ; k_{1}, k_{2}, \ldots, k_{n}}:=\left(\frac{1}{\sqrt{2}}\right)^{n} \sum_{i_{1}, i_{2}, \ldots, i_{n}=0}^{2} a_{i_{1}, i_{2}, \ldots, i_{n}} \prod_{m=1}^{n} \epsilon_{i_{m} j_{m} k_{m}}$
where $\mathcal{H}_{A(B)}^{(i)}$ means the $i$ th space of Alice (resp. Bob) and $\epsilon$ is the Levi-Civita symbol, i.e.,
$\epsilon_{i j k}=1$ for $(i j k)=(123)$ and its even permutations, -1 for odd permutations and 0 otherwise. Henceforth, we identify the above coefficient $\alpha_{j_{1}, \ldots, j_{n} ; k_{1}, \ldots, k_{n}}$ with the entries of a matrix $\alpha \in M\left(3^{n} ; \mathbb{C}\right)$ with respect to the rows $\left\{j_{1}, \ldots, j_{n}\right\}$ and the columns $\left\{k_{1}, \ldots, k_{n}\right\}$ with lexicographical order.

The entanglement of formation $E_{f}$ is defined as follows:

$$
\begin{equation*}
E_{f}(\rho)=\inf \sum_{j} p_{j} E\left(\left|\psi_{j}\right\rangle\right) \tag{3}
\end{equation*}
$$

where $p_{j}$ and $\left|\psi_{j}\right\rangle$ are decompositions such that $\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$ and $E$ is the entropy of entanglement

$$
E(|\psi\rangle)=S\left(\operatorname{Tr}_{B}|\psi\rangle\langle\psi|\right) .
$$

The subadditivity of $E_{f}$ is well known [6]:
Lemma 1 (Subadditivity). Let $\rho^{(i)}$ be density matrices on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, i.e., bipartite states. Then,

$$
E_{f}\left(\otimes_{i=1}^{n} \rho^{(i)}\right) \leqslant \sum_{i=1}^{n} E_{f}\left(\rho^{(i)}\right)
$$

In [6], it is also shown that $E_{f}(\rho)=1$ for any $\rho \in \mathcal{S}\left(\mathcal{H}_{-}\right)$. Using their result, we obtain the following:

Corollary 1. For any $\rho^{(i)} \in \mathcal{S}\left(\mathcal{H}_{-}\right)$,

$$
E_{f}\left(\otimes_{i=1}^{n} \rho^{(i)}\right) \leqslant n .
$$

To prove $E_{c}=1$, it is therefore sufficient that we show the superadditivity $E_{f}\left(\otimes_{i=1}^{n} \rho^{(i)}\right) \geqslant n$. For the states in $\mathcal{H}_{-}^{\otimes n}$, we can prove the following lemma:

Lemma 2. For any $|\psi\rangle \in \mathcal{H}_{-}^{\otimes n}$,

$$
\begin{equation*}
E(|\psi\rangle) \geqslant n . \tag{4}
\end{equation*}
$$

We give a proof of this lemma in the appendix. The following corollary immediately follows from this lemma because the definition of the entanglement of formation (3) is a linear combination of (4).

Corollary 2. For any $\rho \in \mathcal{S}\left(\mathcal{H}_{-}^{\otimes n}\right)$,

$$
E_{f}(\rho) \geqslant n .
$$

Theorem 1. For any $\rho^{(i)} \in \mathcal{S}\left(\mathcal{H}_{-}\right)$,

$$
E_{f}\left(\otimes_{i=1}^{n} \rho^{(i)}\right)=n
$$

Proof. From corollaries 1 and 2, this theorem holds.
Hence, as a corollary of this theorem, we obtain the main result:
Corollary 3 (Main result). For any $\rho \in \mathcal{S}\left(\mathcal{H}_{-}\right)$,

$$
E_{f}\left(\rho^{\otimes n}\right)=n
$$

Therefore,

$$
E_{c}(\rho):=\lim _{n \rightarrow \infty} \frac{1}{n} E_{f}\left(\rho^{\otimes n}\right)=1 .
$$

## Acknowledgment

The author is grateful to T Shimono, K Matsumoto and H Fan for helpful discussions on related works and seminars.

## Appendix. Proof of lemma 2

It is well known that the entanglement of pure states is defined by von Neumann entropy of the reduced density matrix $\rho_{A}=\operatorname{Tr}_{B}|\psi\rangle\langle\psi|=\alpha \alpha^{\dagger}$, where $\alpha$ is a $3^{n} \times 3^{n}$ matrix, which is defined in (1). Let $\lambda_{i}$ be the eigenvalues of $\rho_{A}$ and its elementary symmetric functions

$$
\begin{aligned}
s_{1} & :=\sum_{i} \lambda_{i}=\operatorname{Tr} \rho_{A}=1 \\
s_{2} & :=\sum_{i<j} \lambda_{i} \lambda_{j} \\
& \vdots \\
s_{3^{n}} & :=\prod_{i} \lambda_{i}=\operatorname{det} \rho_{A}
\end{aligned}
$$

the power sum $I_{k}\left(\rho_{A}\right)=\sum_{i} \lambda_{i}^{k}=\operatorname{Tr}_{A}{ }^{k}$, respectively. Note that $\sqrt{s_{2}}$ is the generalized concurrence [10-12]. As we will see later, the value of this generalized concurrence is closely related to the entanglement of formation in our case.

Proposition 1. Let $\alpha$ be the coefficient of $|\psi\rangle \in \mathcal{H}_{-}^{\otimes n}$ and $\rho_{A}=\alpha \alpha^{\dagger}$. Then,

$$
\begin{equation*}
I_{2}\left(\rho_{A}\right) \leqslant \frac{1}{2^{n}} \tag{5}
\end{equation*}
$$

Proof. The calculation of $I_{2}\left(\rho_{A}\right)$ is lengthy but straightforward. First, let us choose two rows $J:=\left(j_{1}, j_{2}, \ldots, j_{n}\right), J^{\prime}:=\left(j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{n}^{\prime}\right)$ and two columns $K:=\left(k_{1}, k_{2}, \ldots, k_{n}\right), K^{\prime}:=$ $\left(k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{n}^{\prime}\right)$ for a $2 \times 2$ minor of matrix $\alpha$. Since $s_{k}\left(\rho_{A}\right)$ is equal to the square sum of all $k \times k$ minors of $\alpha$, i.e., due to the Cauchy-Binet theorem [4], we therefore obtain (see also [5])

$$
\begin{aligned}
& s_{2}\left(\rho_{A}\right)=\frac{1}{4} \sum_{j_{1}, j_{2}, \ldots, j_{n}=0}^{2}\left|\alpha_{j_{1}, \ldots, j_{n} ; k_{1}, \ldots, k_{n}} \alpha_{j_{1}^{\prime}, \ldots, j_{n}^{\prime} ; k_{1}^{\prime}, \ldots, k_{n}^{\prime}}-\alpha_{j_{1}, \ldots, j_{n} ; k_{1}^{\prime}, \ldots, k_{n}^{\prime}} \alpha_{j_{1}^{\prime}, \ldots, j_{n}^{\prime} ; k_{1}, \ldots, k_{n}}\right|^{2} \\
& \begin{array}{l}
j_{1}, j_{2}, \ldots, j_{n}=0 \\
j_{1}^{\prime}, y_{2}, \ldots, j_{n}^{\prime}=0
\end{array} \\
& k_{1}, k_{2}, \ldots, k_{n}=0 \\
& k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{n}^{\prime}=0 \\
& =\frac{1}{4}\left(\frac{1}{2^{n}}\right)^{2} \sum_{J J^{\prime} K K^{\prime}} \\
& \times \mid\left(\sum_{p_{1}, \ldots, p_{n}=0}^{2} a_{p_{1}, \ldots, p_{n}} \prod_{m=1}^{n} \epsilon_{p_{m} j_{m} k_{m}}\right)\left(\sum_{p_{1}^{\prime}, \ldots, p_{n}^{\prime}=0}^{2} a_{p_{1}^{\prime}, \ldots, p_{n}^{\prime}} \prod_{m^{\prime}=1}^{n} \epsilon_{p_{m^{\prime}}^{\prime} j_{m^{\prime}}^{\prime}, k_{m^{\prime}}^{\prime}}\right) \\
& -\left.\left(\sum_{p_{1}, \ldots, p_{n}=0}^{2} a_{p_{1}, \ldots, p_{n}} \prod_{m=1}^{n} \epsilon_{p_{m} j_{m} k_{m}^{\prime}}\right)\left(\sum_{p_{1}^{\prime}, \ldots, p_{n}^{\prime}=0}^{2} a_{p_{1}^{\prime}, \ldots, p_{n}^{\prime}} \prod_{m^{\prime}=1}^{n} \epsilon_{p_{m^{\prime}}^{\prime} j_{m^{\prime}}^{\prime}, k_{m^{\prime}}}\right)\right|^{2} \\
& \left.=\frac{1}{2^{2 n+2}} \sum_{J J^{\prime} K K^{\prime}} \right\rvert\, \sum_{P P^{\prime}} a_{p_{1}, \ldots, p_{n}} a_{p_{1}^{\prime}, \ldots, p_{n}^{\prime}}\left(\prod_{m=1}^{n} \epsilon_{p_{m} j_{m} k_{m}} \prod_{m^{\prime}=1}^{n} \epsilon_{p_{m^{\prime}}^{\prime} j_{m^{\prime}}^{\prime} \prime_{m^{\prime}}^{\prime}}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.-\prod_{m=1}^{n} \epsilon_{p_{m} j_{m} k_{m}^{\prime}} \prod_{m^{\prime}=1}^{n} \epsilon_{p_{m^{\prime}}^{\prime} j_{m^{\prime}}^{\prime} k_{m^{\prime}}}\right)\left.\right|^{2} \\
& =\frac{1}{2^{2 n+1}} \sum_{J J^{\prime} K K^{\prime} P} \sum_{P^{\prime} Q Q^{\prime}} a_{p_{1}, \ldots, p_{n}} a_{p_{1}^{\prime}, \ldots, p_{n}^{\prime}} a_{q_{1}, \ldots, q_{n}}^{*} a_{q_{1}^{\prime}, \ldots, q_{n}^{\prime}}^{*} \\
& \times\left(\prod_{m_{1}} \epsilon_{p_{m_{1}} j_{m_{1}} k_{m_{1}}} \prod_{m_{2}} \epsilon_{p_{m_{2}}^{\prime} j_{m_{2}}^{\prime} k_{m_{2}}^{\prime}} \prod_{m_{3}} \epsilon_{q_{m_{3}} j_{m_{3}} k_{m_{3}}} \prod_{m_{4}} \epsilon_{q_{m_{4}}^{\prime} j_{m_{4}}^{\prime} k_{m_{4}}^{\prime}}\right. \tag{6}
\end{align*}
$$

where we denote $\sum_{P} \equiv \sum_{p_{1}, p_{2}, \ldots, p_{n}=0}^{2}$ and $a_{P} \equiv a_{p_{1}, p_{2}, \ldots, p_{n}}$, etc, for simplicity. Let us divide (6) into two parts.

## 1. First term

$$
\begin{aligned}
& \sum_{J J^{\prime} K K^{\prime}}\left(\prod_{m_{1}=1}^{n} \epsilon_{p_{m_{1}} j_{m_{1}} k_{m_{1}}} \prod_{m_{2}=1}^{n} \epsilon_{p_{m_{2}}^{\prime} j_{m_{2}}^{\prime} k_{m_{2}}^{\prime}} \prod_{m_{3}=1}^{n} \epsilon_{q_{m_{3}} j_{m_{3}} k_{m_{3}}} \prod_{m_{4}=1}^{n} \epsilon_{q_{m_{4}}^{\prime} j_{m_{4}}^{\prime} k_{m_{4}}^{\prime}}\right) \\
&= \sum_{j_{2}, \ldots, j_{n}=0}^{2} \sum_{J^{\prime} K K^{\prime}}\left(\sum_{j_{1}=0}^{2} \epsilon_{p_{1} j_{1} k_{1}} \epsilon_{q_{1} j_{1} k_{1}}\right) \\
& \times\left(\prod_{m_{1}=2}^{n} \epsilon_{p_{m_{1}} j_{m_{1}} k_{m_{1}}} \prod_{m_{2}=1}^{n} \epsilon_{\left.p_{m_{2}}^{\prime} j_{m_{2}}^{\prime} k_{m_{2}}^{\prime} \prod_{m_{3}=2}^{n} \epsilon_{q_{m_{3}} j_{m_{3}} k_{m_{3}}} \prod_{m_{4}=1}^{n} \epsilon_{q_{m_{4}}^{\prime} j_{m_{4}}^{\prime} k_{m_{4}}^{\prime}}\right)}^{=}\right. \\
& \sum_{K}\left[\prod_{m=1}^{n}\left(\delta_{k_{m} k_{m}} \delta_{p_{m} q_{m}}-\delta_{k_{m} p_{m}} \delta_{k_{m} q_{m}}\right)\right] \\
& \times \sum_{K^{\prime}}\left[\prod_{m=1}^{n}\left(\delta_{k_{m}^{\prime} k_{m}^{\prime}} \delta_{p_{m}^{\prime} q_{m}^{\prime}}-\delta_{k_{m}^{\prime} p_{m}^{\prime}} \delta_{k_{m}^{\prime} q_{m}^{\prime}}\right)\right] \\
&= 2^{2 n} \prod_{m=1}^{n} \delta_{p_{m} q_{m}} \delta_{p_{m}^{\prime} q_{m}^{\prime}}
\end{aligned}
$$

where we use the relation $\sum_{j_{1}=0}^{2} \epsilon_{p_{1} j_{1} k_{1}} \epsilon_{q_{1} j_{1} k_{1}}=\delta_{k_{1} k_{1}} \delta_{p_{1} q_{1}}-\delta_{k_{1} p_{1}} \delta_{k_{1} q_{1}}$.
2. Second term

$$
\begin{aligned}
& \sum_{J_{J^{\prime} K} K^{\prime}}\left(\prod_{m_{1}=1}^{n} \epsilon_{p_{m_{1}} j_{m_{1}} k_{m_{1}}} \prod_{m_{2}=1}^{n} \epsilon_{p_{m_{2}}^{\prime} j_{m_{2}}^{\prime} k_{m_{2}}^{\prime}} \prod_{m_{3}=1}^{n} \epsilon_{q_{m_{3}} j_{m_{3}} k_{m_{3}}^{\prime}} \prod_{m_{4}=1}^{n} \epsilon_{q_{m_{4}}^{\prime} j_{m_{4}}^{\prime} k_{m_{4}}}\right) \\
&= \sum_{j_{2}, \ldots, j_{n}=0}^{2} \sum_{J^{\prime} K K^{\prime}}\left(\sum_{j_{1}=0}^{2} \epsilon_{p_{1} j_{1} k_{1}} \epsilon_{q_{1} j_{1} k_{1}^{\prime}}\right) \\
& \times\left(\prod_{m_{1}=2}^{n} \epsilon_{p_{m_{1}} j_{m_{1}} k_{m_{1}}} \prod_{m_{2}=1}^{n} \epsilon_{p_{m_{2}}^{\prime} j_{m_{2}}^{\prime} k_{m_{2}}^{\prime}}^{\prod_{m_{3}=2}^{n} \epsilon_{q_{m_{3}} j_{m_{3}} k_{m_{3}}^{\prime}}^{\left.\prod_{m_{4}=1}^{n} \epsilon_{q_{m_{4}}^{\prime} j_{m_{4}}^{\prime} k_{m_{4}}}\right)}} \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{K K^{\prime}} \prod_{m=1}^{n}\left(\delta_{k_{m} k_{m}^{\prime}} \delta_{p_{m} q_{m}}-\delta_{k_{m} p_{m}} \delta_{k_{m}^{\prime} q_{m}}\right)\left(\delta_{k_{m}^{\prime} k_{m}} \delta_{p_{m}^{\prime} q_{m}^{\prime}}-\delta_{k_{m}^{\prime} ~_{m}^{\prime}} \delta_{k_{m} q_{m}^{\prime}}\right) \\
& =\prod_{m=1}^{n}\left(\delta_{p_{m} q_{m}} \delta_{p_{m}^{\prime} q_{m}^{\prime}}+\delta_{p_{m}^{\prime} q_{m}} \delta_{p_{m} q_{m}^{\prime}}\right) .
\end{aligned}
$$

We summarize these terms and obtain the following:

$$
\begin{gathered}
s_{2}\left(\rho_{A}\right)=\frac{1}{2^{2 n+1}} \sum_{P P^{\prime} Q Q^{\prime}} a_{P} a_{P^{\prime}} a_{Q}^{*} a_{Q^{\prime}}^{*}\left[2^{2 n} \prod_{m=1}^{n} \delta_{p_{m} q_{m}} \delta_{p_{m}^{\prime} q_{m}^{\prime}}-\prod_{m=1}^{n}\left(\delta_{p_{m} q_{m}} \delta_{p_{m}^{\prime} q_{m}^{\prime}}+\delta_{p_{m}^{\prime} q_{m}} \delta_{p_{m} q_{m}^{\prime}}\right)\right] \\
=\frac{1}{2}-\frac{1}{2^{2 n+1}} \sum_{P P^{\prime} Q Q^{\prime}} a_{P} a_{P^{\prime}} a_{Q}^{*} a_{Q^{\prime}}^{*} \prod_{m=1}^{n}\left(\delta_{p_{m} q_{m}} \delta_{p_{m}^{\prime} q_{m}^{\prime}}+\delta_{p_{m}^{\prime} q_{m}} \delta_{p_{m} q_{m}^{\prime}}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
I_{2}\left(\rho_{A}\right)= & s_{1}\left(\rho_{A}\right)^{2}-2 s_{2}\left(\rho_{A}\right) \\
= & \frac{1}{2^{2 n}} \sum_{P P^{\prime} Q Q^{\prime}} a_{P} a_{P^{\prime}} a_{Q}^{*} a_{Q^{\prime}}^{*} \prod_{m=1}^{n}\left(\delta_{p_{m} q_{m}} \delta_{p_{m}^{\prime} q_{m}^{\prime}}+\delta_{p_{m}^{\prime} q_{m}} \delta_{p_{m} q_{m}^{\prime}}\right) \\
= & \frac{1}{2^{2 n}} \sum_{P P^{\prime} Q Q^{\prime}} \prod_{m=1}^{n}\left(\delta_{p_{m} q_{m}} \delta_{p_{m}^{\prime} q_{m}^{\prime}}+\delta_{p_{m}^{\prime} q_{m}} \delta_{p_{m} q_{m}^{\prime}}\right) \\
& \quad \times \frac{1}{2}\left[-\left|a_{P} a_{P^{\prime}}-a_{Q} a_{Q^{\prime}}\right|^{2}+\left|a_{P} a_{P^{\prime}}\right|^{2}+\left|a_{Q} a_{Q^{\prime}}\right|^{2}\right] \\
= & \frac{1}{2^{n}}-\frac{1}{2^{2 n+1}} \sum_{P P^{\prime} Q Q^{\prime}} \prod_{m=1}^{n}\left(\delta_{p_{m} q_{m}} \delta_{p_{m}^{\prime} q_{m}^{\prime}}+\delta_{p_{m}^{\prime} q_{m}} \delta_{p_{m} q_{m}^{\prime}}\right)\left|a_{P} a_{P^{\prime}}-a_{Q} a_{Q^{\prime}}\right|^{2} \\
\leqslant & \frac{1}{2^{n}} .
\end{aligned}
$$

We have thus proved proposition 1 .
The following theorem is important:
Theorem 2 (Furuta; special case of [8, 9]). Let A be an invertible positive operator. Then for any positive $x \in \mathbb{R}$

$$
-A \log A \geqslant(1-\log x) A-\frac{1}{x} A^{2}
$$

This inequality holds even for singular $A$ under the convention $0 \log 0=0$. By diagonalizing $A$ and applying $-x \log x \geqslant\left(1-\log x_{0}\right) x-x^{2} / x_{0}$ for positive $x$ and $x_{0}$, we can obtain this inequality.

Corollary 4. Let $S(A)=-\operatorname{Tr}\left(A \log _{2} A\right.$ ) and $\rho_{A}$ a normalized density matrix (i.e. $\operatorname{Tr} \rho_{A}=1$ ). Then for positive $x$,

$$
S\left(\rho_{A}\right) \geqslant\left[(1-\log x)-I_{2}\left(\rho_{A}\right) / x\right] / \log 2 \geqslant-\log _{2} I_{2}\left(\rho_{A}\right)
$$

where the lower bound holds when $x=I_{2}\left(\rho_{A}\right)$.
Hence, $S\left(\rho_{A}\right) \geqslant n$ and this ends the proof of lemma 2.

## References

[1] Hayden P M, Horodecki M and Terhal B M 2001 J. Phys. A: Math. Gen. 346891
[2] Shimono T 2003 Preprint quant-ph/0301011
[3] Shimono T 2002 Preprint quant-ph/0203039
[4] Horn R A and Johnson C R 1985 Matrix Analysis (Cambridge: Cambridge University Press)
[5] Fan H, Matsumoto K and Imai H 2002 Preprint quant-ph/0204041
[6] Vidal G, Dür W and Cirac J I 2002 Phys. Rev. Lett. 8927901
[7] Matsumoto K, Shimono T and Winter A 2002 Preprint quant-ph/0206148
[8] Furuta T 1993 J. Operator Theory 3021
[9] Furuta T 1997 General Inequalities 7 vol 123 (Basle: Birkhäuser) p 65
10] Uhlmann A 2000 Phys. Rev. A 62032307
[11] Rungta P, Bǔzek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64042315
[12] Albererio S and Fei S M 2001 J. Opt. B 3223

