
Entanglement cost of three-level antisymmetric states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 L237

(http://iopscience.iop.org/0305-4470/36/15/104)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 02/06/2010 at 11:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) L237–L242 PII: S0305-4470(03)59969-3

LETTER TO THE EDITOR

Entanglement cost of three-level antisymmetric states

Fumitaka Yura

Imai Quantum Computing and Information Project, ERATO, JST, Daini Hongo White Bldg 201,
5-28-3 Hongo, Bunkyo, Tokyo 113-0033, Japan

Received 24 February 2003, in final form 4 March 2003
Published 3 April 2003
Online at stacks.iop.org/JPhysA/36/L237

Abstract
We show that the entanglement cost of the three-dimensional antisymmetric
states is one ebit.

PACS numbers: 03.65.Ud, 03.67.−a

The concept of entanglement is the key to quantum information processing. To quantify
the resource of entanglement, its measures should be additive, such as bits for classical
information. One candidate for such additive measures is entanglement of formation. In
[1], it is shown that the entanglement cost Ec of creating some state can be asymptotically
calculated from the entanglement of formation. In this sense, the entanglement cost has an
important physical meaning. Since the known results are, nevertheless, not so much [6, 7],
we pay attention to antisymmetric states that are easy to deal with.

As is already shown [2], the entanglement of formation for two states in S (H−) is
additive. Furthermore, the lower bound for the entanglement cost of density matrices in
d-level antisymmetric space, obtained in [3], is log2

d
d−1 ebit. In this paper, we show that the

entanglement cost of three-level antisymmetric states (d = 3) in S (H−) is exactly one ebit.
We first define the three-level antisymmetric states. Let us consider a bipartite qutrit

system, HA = HB = C
3. The antisymmetric subspace H− on HA ⊗HB is defined as follows:

H− := spanC{|01〉 − |10〉, |12〉 − |21〉, |20〉 − |02〉} ⊂ HA ⊗ HB.

Then, the antisymmetric state on H⊗n
− shared with Alice and Bob is, in general,

|ψ〉 =
2∑

j1,j2,...,jn=0
k1,k2,...,kn=0

αj1,j2,...,jn;k1,k2,...,kn
|j1, j2, . . . , jn; k1, k2, . . . , kn〉

∈ H⊗n
− ⊂ H(1)

A ⊗ H(2)
A ⊗ · · · ⊗ H(n)

A ⊗ H(1)
B ⊗ H(2)

B ⊗ · · · ⊗ H(n)
B (1)

αj1,j2,...,jn;k1,k2,...,kn
:=

(
1√
2

)n 2∑
i1,i2,...,in=0

ai1,i2,...,in

n∏
m=1

εimjmkm
(2)

where H(i)

A(B) means the ith space of Alice (resp. Bob) and ε is the Levi-Civita symbol, i.e.,

0305-4470/03/150237+06$30.00 © 2003 IOP Publishing Ltd Printed in the UK L237

http://stacks.iop.org/ja/36/L237


L238 Letter to the Editor

εijk = 1 for (ijk) = (123) and its even permutations, −1 for odd permutations and 0
otherwise. Henceforth, we identify the above coefficient αj1,...,jn;k1,...,kn

with the entries of a
matrix α ∈ M(3n; C) with respect to the rows {j1, . . . , jn} and the columns {k1, . . . , kn} with
lexicographical order.

The entanglement of formation Ef is defined as follows:

Ef (ρ) = inf
∑

j

pjE(|ψj 〉) (3)

where pj and |ψj 〉 are decompositions such that ρ = ∑
j pj |ψj 〉〈ψj | and E is the entropy of

entanglement

E(|ψ〉) = S(TrB |ψ〉〈ψ|).
The subadditivity of Ef is well known [6]:

Lemma 1 (Subadditivity). Let ρ(i) be density matrices on HA ⊗ HB , i.e., bipartite states.
Then,

Ef

(⊗n
i=1 ρ(i)

)
�

n∑
i=1

Ef (ρ(i)).

In [6], it is also shown that Ef (ρ) = 1 for any ρ ∈ S(H−). Using their result, we obtain the
following:

Corollary 1. For any ρ(i) ∈ S(H−),

Ef

(⊗n
i=1 ρ(i)

)
� n.

To prove Ec = 1, it is therefore sufficient that we show the superadditivity Ef

(⊗n
i=1 ρ(i)

)
� n.

For the states in H⊗n
− , we can prove the following lemma:

Lemma 2. For any |ψ〉 ∈ H⊗n
− ,

E(|ψ〉) � n. (4)

We give a proof of this lemma in the appendix. The following corollary immediately follows
from this lemma because the definition of the entanglement of formation (3) is a linear
combination of (4).

Corollary 2. For any ρ ∈ S
(
H⊗n

−
)
,

Ef (ρ) � n.

Theorem 1. For any ρ(i) ∈ S(H−),

Ef

(⊗n
i=1ρ

(i)
) = n.

Proof. From corollaries 1 and 2, this theorem holds. �

Hence, as a corollary of this theorem, we obtain the main result:

Corollary 3 (Main result). For any ρ ∈ S(H−),

Ef (ρ⊗n) = n.

Therefore,

Ec(ρ) := lim
n→∞

1

n
Ef (ρ⊗n) = 1.
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Appendix. Proof of lemma 2

It is well known that the entanglement of pure states is defined by von Neumann entropy of
the reduced density matrix ρA = TrB |ψ〉〈ψ| = αα† , where α is a 3n × 3n matrix, which is
defined in (1). Let λi be the eigenvalues of ρA and its elementary symmetric functions

s1 :=
∑

i

λi = Tr ρA = 1

s2 :=
∑
i<j

λiλj

...

s3n :=
∏

i

λi = det ρA

the power sum Ik(ρA) = ∑
i λk

i = TrρA
k , respectively. Note that

√
s2 is the generalized

concurrence [10–12]. As we will see later, the value of this generalized concurrence is closely
related to the entanglement of formation in our case.

Proposition 1. Let α be the coefficient of |ψ〉 ∈ H⊗n
− and ρA = αα†. Then,

I2(ρA) � 1

2n
. (5)

Proof. The calculation of I2(ρA) is lengthy but straightforward. First, let us choose two rows
J := (j1, j2, . . . , jn), J

′ := (j ′
1, j

′
2, . . . , j

′
n) and two columns K := (k1, k2, . . . , kn),K

′ :=
(k′

1, k
′
2, . . . , k

′
n) for a 2 × 2 minor of matrix α. Since sk(ρA) is equal to the square sum of

all k × k minors of α, i.e., due to the Cauchy–Binet theorem [4], we therefore obtain (see
also [5])

s2(ρA) = 1

4

2∑
j1,j2,...,jn=0
j ′

1,j
′
2,...,j

′
n=0

k1,k2,...,kn=0
k′

1,k
′
2,...,k

′
n=0

∣∣αj1,...,jn;k1,...,kn
αj ′

1,...,j
′
n;k′

1,...,k
′
n
− αj1,...,jn;k′

1,...,k
′
n
αj ′

1,...,j
′
n;k1,...,kn

∣∣2

= 1

4

(
1

2n

)2 ∑
JJ ′KK ′

×
∣∣∣∣∣∣

 2∑

p1,...,pn=0

ap1,...,pn

n∏
m=1

εpmjmkm





 2∑

p′
1,...,p

′
n=0

ap′
1,...,p

′
n

n∏
m′=1

εp′
m′ j ′

m′ k′
m′




−

 2∑

p1,...,pn=0

ap1,...,pn

n∏
m=1

εpmjmk′
m





 2∑

p′
1,...,p

′
n=0

ap′
1,...,p

′
n

n∏
m′=1

εp′
m′ j ′

m′ km′




∣∣∣∣∣∣
2

= 1

22n+2

∑
JJ ′KK ′

∣∣∣∣∣
∑
PP ′

ap1,...,pn
ap′

1,...,p
′
n

(
n∏

m=1

εpmjmkm

n∏
m′=1

εp′
m′ j ′

m′ k′
m′
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−
n∏

m=1

εpmjmk′
m

n∏
m′=1

εp′
m′ j ′

m′km′

)∣∣∣∣∣
2

= 1

22n+1

∑
JJ ′KK ′

∑
PP ′QQ′

ap1,...,pn
ap′

1,...,p
′
n
a∗

q1,...,qn
a∗

q ′
1,...,q

′
n

×
(∏

m1

εpm1 jm1 km1

∏
m2

εp′
m2

j ′
m2

k′
m2

∏
m3

εqm3 jm3 km3

∏
m4

εq ′
m4

j ′
m4

k′
m4

−
∏
m1

εpm1 jm1 km1

∏
m2

εp′
m2

j ′
m2

k′
m2

∏
m3

εqm3 jm3 k′
m3

∏
m4

εq ′
m4

j ′
m4

km4

)
(6)

where we denote
∑

P ≡ ∑2
p1,p2,...,pn=0 and aP ≡ ap1,p2,...,pn

, etc, for simplicity. Let us divide
(6) into two parts.

1. First term

∑
JJ ′KK ′


 n∏

m1=1

εpm1 jm1 km1

n∏
m2=1

εp′
m2

j ′
m2

k′
m2

n∏
m3=1

εqm3 jm3 km3

n∏
m4=1

εq ′
m4

j ′
m4

k′
m4




=
2∑

j2,...,jn=0

∑
J ′KK ′


 2∑

j1=0

εp1j1k1εq1j1k1




×

 n∏

m1=2

εpm1 jm1 km1

n∏
m2=1

εp′
m2

j ′
m2

k′
m2

n∏
m3=2

εqm3 jm3 km3

n∏
m4=1

εq ′
m4

j ′
m4

k′
m4




=
∑
K

[
n∏

m=1

(
δkmkm

δpmqm
− δkmpm

δkmqm

)]

×
∑
K ′

[
n∏

m=1

(
δk′

mk′
m
δp′

mq ′
m

− δk′
mp′

m
δk′

mq ′
m

)]

= 22n

n∏
m=1

δpmqm
δp′

mq ′
m

where we use the relation
∑2

j1=0 εp1j1k1εq1j1k1 = δk1k1δp1q1 − δk1p1δk1q1 .

2. Second term

∑
JJ ′KK ′


 n∏

m1=1

εpm1 jm1 km1

n∏
m2=1

εp′
m2

j ′
m2

k′
m2

n∏
m3=1

εqm3 jm3 k′
m3

n∏
m4=1

εq ′
m4

j ′
m4

km4




=
2∑

j2,...,jn=0

∑
J ′KK ′


 2∑

j1=0

εp1j1k1εq1j1k
′
1




×

 n∏

m1=2

εpm1 jm1 km1

n∏
m2=1

εp′
m2

j ′
m2

k′
m2

n∏
m3=2

εqm3 jm3 k′
m3

n∏
m4=1

εq ′
m4

j ′
m4

km4
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=
∑
KK ′

n∏
m=1

(
δkmk′

m
δpmqm

− δkmpm
δk′

mqm

) (
δk′

mkm
δp′

mq ′
m

− δk′
mp′

m
δkmq ′

m

)

=
n∏

m=1

(
δpmqm

δp′
mq ′

m
+ δp′

mqm
δpmq ′

m

)
.

We summarize these terms and obtain the following:

s2(ρA) = 1

22n+1

∑
PP ′QQ′

aP aP ′a∗
Qa∗

Q′

[
22n

n∏
m=1

δpmqm
δp′

mq ′
m

−
n∏

m=1

(
δpmqm

δp′
mq ′

m
+ δp′

mqm
δpmq ′

m

)]

= 1

2
− 1

22n+1

∑
PP ′QQ′

aP aP ′a∗
Qa∗

Q′

n∏
m=1

(
δpmqm

δp′
mq ′

m
+ δp′

mqm
δpmq ′

m

)
and

I2(ρA) = s1(ρA)2 − 2s2(ρA)

= 1

22n

∑
PP ′QQ′

aP aP ′a∗
Qa∗

Q′

n∏
m=1

(
δpmqm

δp′
mq ′

m
+ δp′

mqm
δpmq ′

m

)

= 1

22n

∑
PP ′QQ′

n∏
m=1

(
δpmqm

δp′
mq ′

m
+ δp′

mqm
δpmq ′

m

)

× 1

2
[−|aPaP ′ − aQaQ′ |2 + |aP aP ′ |2 + |aQaQ′ |2]

= 1

2n
− 1

22n+1

∑
PP ′QQ′

n∏
m=1

(
δpmqm

δp′
mq ′

m
+ δp′

mqm
δpmq ′

m

) |aP aP ′ − aQaQ′ |2

� 1

2n
.

We have thus proved proposition 1. �

The following theorem is important:

Theorem 2 (Furuta; special case of [8, 9]). Let A be an invertible positive operator. Then for
any positive x ∈ R

−A log A � (1 − log x)A − 1

x
A2.

This inequality holds even for singular A under the convention 0 log 0 = 0. By diagonalizing
A and applying −x log x � (1 − log x0)x − x2/x0 for positive x and x0, we can obtain this
inequality.

Corollary 4. Let S(A) = −Tr(A log2 A) and ρA a normalized density matrix (i.e. TrρA = 1).
Then for positive x,

S(ρA) � [(1 − log x) − I2(ρA)/x]/log 2 � −log2 I2(ρA)

where the lower bound holds when x = I2(ρA).

Hence, S(ρA) � n and this ends the proof of lemma 2.
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